
고성능 복합재를 위한 3차원 나노탄소다공체 제조 기술

트렌드

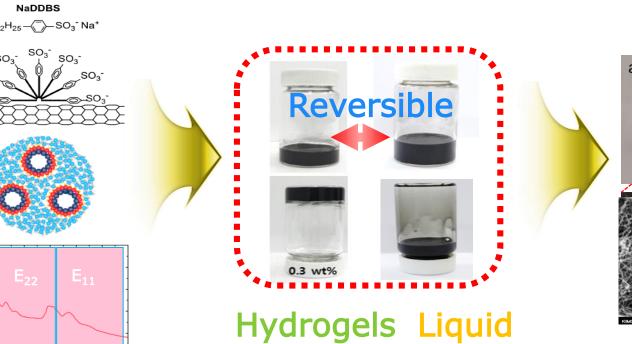
나노탄소 소재를 이용한 기계적, 전기화학적 특성이 극대화된 고성능 복합 소재 기술 요구

3차원 나노탄소다공체

나노복합재료

경량-고강도

고내열

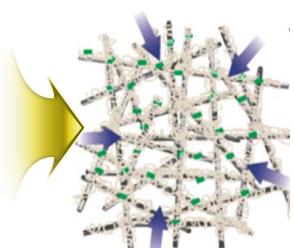


에너지 저장

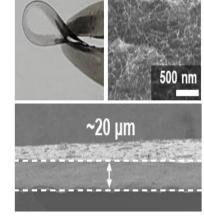
기술내용

3차원 나노탄소다공체: 전기전도도, 열전도도, 기계적 특성, 기공 및 비표면적 특성 조절나노탄소 기반 고성능 복합재 제조: 극한 환경용 고성능 고분자 복합재

3차원 나노탄소다공체 제조 공정



나노탄소완전분 나노탄소 하이드로젤 사


3차원 나노탄소다공체 기반 고성능 복합재 제조 공정

나노탄소 에어로젤

고성능 고내열 및 2차전지용 나노탄소 복합 재

응용분야

주요 적용처		개발내용	
	Automobile	자동차, 항공 및 드론 등 수송기기용 고성능 구조용 소재	
	Energy storage	3차원 나노탄소의 고비표면적 및 우수한 전기전도 성을 이용한 경량 에너지 저장 장치 응용	

협력희망

공동연구 (극한환경용 고분자 복합재, 나노탄소 기반 배터리 전극개발) 기술이전 (나노탄소 복합재 실제 제품 적용 및 기술이전)

3차원 나노탄소다공체 기반 고성능 복합재 제조 기술

기술 개요

- 형상 및 물리적 특성 조절 가능한 3차원 형상의 나노탄소구조체 합성
- 나노탄소 소재의 비표면적, 전기적, 기계적 및 물리적 특성 발현 최적화
- 고분자의 유동 특성에 대한 나노구속효과 발현으로 극한 환경 하에서 기계적 특성 유지
- 구조용 고분자 복합재 적용 시 -100 °C 이하의 극저온부터 450 °C 이상의 초고온 환경용 국방 및 우주항공용 소재로 주로 적용
- 고비표면적, 고전도성 특성으로 인해 고용량 유기 전극 물질 코팅을 통해 별도의 집전체가 필요 없는 일체형 2차 전지용 음극재 개발
- 유기 전극물질 코팅 두께 조절을 통해 최대 1550 mAh/g의 용량 및 800 cycle 이상의 고에너지 밀도, 장수명, 유연성 음극재 기술 확보

기술 특장점

핵심1

나노탄소 다공체 개발 및 복합재 응용

- 물리적 특성 조절이 가능한 하이드로젤 타입의 나노탄소전구체를 임계건조 및 개선된 동결건조 방법을 이용하여 높은 비표면적 (800 m²/g 이상)의 3차원 나노탄소다공체 합성
- 3차원 나노탄소 다공체의 우수한 전기전도도, 열전도도, 유변학적 특성
- 다양한 form-factor를 가지는 3차원 탄소나노구조체의 대량 제조 기술 구현
- 나노탄소구조체를 복합재 프리폼으로 적용하여 극한환경에서의 기계적 강도 하락, 열변형 및 취성을 극복 가능
- 나노탄소구조체 기반 집전체-프리 일체형 2차 전지용 고성능 음극재 제조

핵심2

기술스펙 (3차원 나노탄소다공체, 나노복합재)

평가항목		단위	세계최고 성능수준	KIMS 개발 소재 성능수준	
3차원 나노탄소 다공체	(1)	비표면적	m ² /g	~ 1,000	1200 ~ 2300
	(2)	전기전도도	S/m	~1.0	100 ~
	(3)	열전도도	W/mK	0.04	~ 0.01
	(4)	젤-액상 가역	_	비가역	물리적 환경에 따른 완전 가역
나노 복합재	(a)	비강도	kN·m/kg	~1100	~1400
	(b)	비강성	MN·m/kg	~30	~ 40
	(c)	인성	J/g	33 (Kevlar)	120 J/g
	(d)	내열특성 (Tm)	°C	50(TPU)	~350@25wt%

지식 재산권

탄소에어로겔 전구체의 제조 방법, 이에 의하여 제조된 탄소에어로겔 전구체 및 탄소에어로겔 (PCT/KR2017/006409) 탄소 에어로겔의 제조 방법 및 이에 의하여 제조된 탄소 에어로겔 (KR10-2017-0077526) 탄소 에어로겔 전구체의 제조방법 및 이에 의하여 제조된 탄소 에어로겔 전구체 (KR10-2017-0077 탄소 에어로겔 그래핀 복합체 및 이의 제조 방법 (KR10-2017-0077528) 표면에 탄소 입자를 포함하는 탄소 에어로겔 및 이의 제조 방법 (KR10-2017-0077527)

